Diyot Çeşitleri Resimli Anlatım Tüm Diyotlar

Diyot Çeşitleri

    1. Kristal Diyot
    2. Zener Diyot
    3. Tünel Diyot
    4. Işık Yayan Diyot (Led)
    5. Foto Diyot
    6. Ayarlanabilir Kapasiteli Diyot (Varaktör – Varikap)

Diğer Diyotlar

    1. Mikrodalga Diyotları
    2. Gunn Diyotları
    3. Impatt (Avalanş) Diyot
    4. Baritt (Schottky) Diyot
    5. Ani Toparlanmalı Diyot
    6. Pin Diyot
    7. Büyük Güçlü Diyotlar

Diyodun Temel Yapısı

Diyot Nedir?

Diyotlar, yalnızca bir yönde akım geçiren devre elemanıdır.Diğer bir deyimle, bir yöndeki dirençleri ihmal edilebilecek kadar küçük, öbür yöndeki dirençleri ise çok büyük olan elemanlardır. Direncin küçük olduğu yöne "doğru yön" ,büyük olduğu yöne "ters yön" denir. Diyot sembolü, aşağıda görüldüğü gibi, akım geçiş yönünü gösteren bir ok şeklindedir.

Diyot Sembolü:

Diyot

Ayrıca, diyodun uçları pozitif (+) ve negatif (-) işaretleri ile de belirlenir.

"+" ucu anot, "-" uca katot denir.

Diyodun anaduna, gerilim kaynağının pozitif (+) kutbu, katoduna kaynağın negatif (-) kutbu gelecek şekilde gerilim uygulandığında diyot iletime geçer.

Diyodun kullanım alanları:

Diyotlardan, elektrik alanında redresör (doğrultucu), elektronikte ise; doğrultucu,detektör, modülatör, limitör, anahtar olarak çeşitli amaçlar için yararlanılmaktadır.

Diyotların Gruplandırılması:

Diyotlar başlıca üç ana gruba ayrılır:

  1. Lamba diyotlar
  2. Metal diyotlar
  3. Yarı iletken diyotlar

Lamba Diyotlar

Lamba diyotlar en yaygın biçimde redresör ve detektör olarak kullanılmıştır. Sıcak katotlu lamba, civa buharlı ve tungar lambalar bu gruptandır. Şekil 3.1 ‘de sıcak katotlu lamba diyodun iç görünüşü ve çalışma şekli verilmiştir. Şekilde görüldüğü gibi ısınan katotdan fırlayan elektronlar atom tarafından çekilmekte ve devreden tek yönlü bir akım akışı sağlanmaktadır. Eskiden kalanların dışında bu tür diyotlar artık kullanılmamaktadır.


Şekil 3.1 – Lamba Diyodun Çalışma Şekli

Metal Diyotlar

Bakır oksit (CuO) ve selenyumlu diyotlar bu gruba girmektedirler.

Bakır oksitli diyotlar ölçü aletleri ve telekominikasyon devreleri gibi küçük gerilim ve küçük güçle çalışan devrelerde, selenyum diyotlar ise birkaç kilowatt ‘a kadar çıkan güçlü devrelerde kullanılır. Şekil 3.2 ‘de metal diyotların kesiti gösterilmiştir.

Şekil 3.2

Yarı İletken Diyotlar

Yarı iletken diyotları, P ve N tipi germanyum veya Silikon yarı iletken kristallerinin bazı işlemler uygulanarak bir araya getirilmesiyle elde edilen diyotlardır. Hem elektrikte hemde elektronikte kullanılmaktadır. Şekil 3.3 ‘te tipik bir örnek olarak kuvvetli akımda kullanılan bir silikon diyot verilmiştir.
Tablo 3.1 ‘de metal ve yarı iletken diyotlarına ait bazı değerler verilmektedir.

Şekil 3.3

Tablo 3.1 – Bazı metal ve yarı iletken diyotlarının karakteristik değerleri

DİYOT KARAKTERİSTİKLERİ

Birimi

DİYOT CİNSİ

Selenyum Germanyum Silikon
Ters yöndeki dayanma gerilimi

V

40 – 60

500 – 800

1500 – 4000

Aktif yüzeydeki akım yoğunluğu

A / cm2

0.89 – 0.9

100 – 300

100 – 300

Maksimum doğru yön akımı

A

400

200

1000

Gerilim düşümü

V

0.6 – 1

0.6

1.2

Maksimum dayanma sıcaklığı

°C

80°C

65°C

140°C

Ters yön akımının doğru yön akımına oranı

IR / ID

0.1 – 0.03

0.0002

0.00001

Diyotlar arasında bir kıyaslama yapabilmek için Şekil 3.4 ‘te bazılarının karakteristik eğrileri verilmiştir.


Şekil 3.4 – Bazı diyotların karakteristik eğrileri

Kristal Diyot ve Karakteristiği

Nokta temaslı diyot elektronik alanında ilk kullanılan diyottur. 1900-1940 tarihleri arasında özellikle radyo alanında kullanılan galenli ve prit ‘li detektörler kristal diyotların ilk örnekleridir. Şekil 3.12 (a) ‘da görüldüğü gibi galen veya prit kristali üzerinde gezdirilen ince fosfor-bronz tel ile değişik istasyonlar bulunabiliyordu. Günlük hayatta bunlara, kristal detektör veya diğer adıyla kristal diyot denmiştir.
1940 ‘tan sonra, Şekil 3.12 (b) ‘ye benzeyen nokta temaslı germanyum veya silikon diyotlar geliştirilmiştir.
Germanyum veya silikon nokta temaslı diyodun esası; 0.5 mm çapında ve 0.2 mm kalınlığındaki N tipi kristal parçacığı ile "fosfor-bronz" veya "berilyum bakır" bir telin temasını sağlamaktan ibarettir.

Şekil 3.12 Şekil 3.13
Şekil 3.12 – Nokta temaslı diyot

  • Genel yapısı
  • P bölgesinin oluşumu
Şekil 3.13 – Nokta temaslı germanyum diyodun karakteristik eğrisi 

Bu tür diyotta, N tipi kristale noktasal olarak büyük bir pozitif gerilim uygulanır. Pozitif gerilim temas noktasındaki bir kısım kovalan bağı kırarak elektronları alır. Böylece, çok küçük çapta bir P tipi kristal ve dolayısıyla da PN diyot oluşur. Bu oluşum şekil 3.12 (b) ‘de gösterilmiştir.
Bugün nokta temaslı diyotların yerini her ne kadar jonksiyon diyotlar almış ise de, yinede elektrotları arasındaki kapasitenin çok küçük olması nedeniyle yüksek frekanslı devrelerde kullanılma alanları bulunmaktadır.
Ters yön dayanma gerilimleri düşük olup dikkatli kullanılması gerekir. Şekil 3.13 ‘teki karakteristik eğrisinde de görüldüğü gibi

Böyle bir diyodun elektrotlar arası kapasitesi 1 pF ‘ın altına kadar düşmektedir. Dolayısıyla yüksek frekanslar için diğer diyotlara göre daha uygun olmaktadır.

Nokta temaslı diyotların kullanım alanları:

Nokta temaslı silikon diyotlar en çok mikro dalga karıştırıcısında, televizyon, video dedeksiyonunda, germanyum diyotlar ise radyofrekans ölçü aletlerinde (voltmetre, dalgametre, rediktör vs…) kullanılır.

 

Zener Diyot ve Karakteristiği

Zener diyot jonksiyon diyodun özel bir tipidir.

Zener Diyodunun Özellikleri:
  •  Doğru polarmalı halde normal bir diyot gibi çalışır (Şekil 3.14).
  •  Ters polarmalı halde, belirli bir gerilimden sonra iletime geçer.
    Bu gerilime zener dizi gerilimi, veya daha kısa olarak zener gerilimi denir (Şekil 3.14-VZ).
  •  Ters gerilim kalkınca, zener diyotta normal haline döner.
  •  Devrelerde, ters yönde çalışacak şekilde kullanılır.
  •  Bir zener diyot zener gerilimi ile anılır.
    Örn: "30V ‘luk zener" denildiğinde, 30V ‘luk ters gerilimde çalışmaya başlayan zener diyot demektir.
     (Şekil 3.14).
  •  Silikon yapılıdır.

Zener diyot, ters yön çalışması sırasında oluşacak olan aşırı akımdan dolayı bozulabilir. Bu durumu önlemek için devresine daima seri bir koruyucu direnç bağlanır (Şekil 3.16-RS).

Her zaman zener diyodun kataloğunda şu bilgiler bulunur:
  •  Gücü
  •  Ters yön gerilimi(VZ),
  •  Maksimum ters yön akımı(IZM),
  •  Ters yöndeki maksimum kaçak akımı,
  •  Maksimum direnci
  •  Sıcaklık sabiti.
Şu limit
değerlerde çalışan zener diyotlar üretilmektedir:
  •  Maksimum zener akımı (IZM): 12A
  •  Zener gerilimi (VZ): 2 – 200V arası
  •  Maksimum gücü: 100Watt
  •  Maksimum ters yön kaçak akımı: 150µA (mikro amper)
  •  Maksimum çalışma sıcaklığı: 175°C.

Çalışma ortamı sıcaklığı arttıkça zener gerilim küçülür.

Zener geriliminin ayarı:

Zener gerilimin ayarı birleşme yüzeyinin iki tarafında oluşan boşluk bölgesinin (nötr bölge) genişliğinin ayarlanması yoluyla sağlanmaktadır. Bunun içinde çok saf silikon kristal kullanılmakta ve katkı maddesi miktarı değiştirilmektedir. Boşluk bölgesi daraldıkça zener diyot daha küçük ters gerilimde iletime geçmektedir.

Şekil 3.14
Şekil 3.14 – Zener diyot karakteristik eğrisi
Zener gücünün ayarı:

Zener gücü, birleşme yüzeyinin büyüklüğüne ve diyodun üretiminde kullanılan silikonun saflık derecesiyle, katkı maddesinin miktarına bağlıdır. Ayrıca diyot ısındıkça gücüde düşeceğinden, soğutulmasıyla ilgili önlemlerin alınması da gerekir.

Zener Diyodun Kullanım Alanları:

1 – Kırpma Devresinde:

Şekil 3.15 ‘de görüldüğü gibi iki zener diyot ters bağlandığında basit ve etkili bir kırpma devresi elde edilir.

Örneğin:
Devre girişine tepe değeri 10V olan bir AC gerilim uygulansın ve kırpma işlemi için, zener gerilimi 5V olan iki Z1, Z2 zener diyodu kullanılsın.

Şekil 3.15
Şekil 3.15 – İki zener diyotlu tam dalga kırpma devresi

AC gerilimin pozitif alternansı başlangıcında Z1 zeneri doğru polarmalı ve iletimde, Z2zeneri ise ters polarmalı ve kesimde olacaktır.
Giriş gerilimi +5V ‘a ulaştığında Z2 ‘de iletime geçer ve dolayısıyla da çıkış uçları arasında +5V oluşur. Keza, R direnci üzerindeki gerilim düşümü de 5V ‘tur.

AC gerilimin diğer alternansında da Z1 ters polarmalı hale gelir ve bu defa da çıkışta tepesi kırpılmış 5V ‘luk negatif alternans oluşur.
R direnci, devreden akacak akımın Zener diyotları bozmayacak bir değerde kalmasını sağlayacak ve 5V ‘luk gerilim düşümü oluşturacak şekilde seçilmiştir.

2 – Zener Diyodun Gerilim Regülatörü Olarak Kullanılması:

Zener diyottan, çoğunlukla, DC devrelerdeki gerilim regülasyonu için yararlanılmaktadır. Buradaki regülasyondan amaç, gerilimin belirli bir değerde sabit tutulmasıdır.

Bunun için zener diyot, şekil 3.16 ‘da görüldüğü gibi, gerilimi sabit tutmak istenen devre veya yük direncine paralel ve ters polarmalı olarak bağlanır.

Diyot uçlarına gelen gerilim, zener değerine ulaştığında diyot iletime geçer ve uçları arasındaki gerilim sabit kalır.

Örnek:

Şekil 3.16 ‘da verilmiş olan devrede RL yük direnci uçları arasındaki VL gerilimi 6.2V ‘ta sabit tutulmak istensin.

Bunu sağlamak için, şekilde görüldüğü gibi RL ‘e paralel bağlı zener diyodun ve seri bağlı bir RS direncinin seçimi gerekir.

Ayrıca, bir de C kondansatörünün paralel bağlanmasında yarar vardır. Bu kondansatör, gerilim dalgalanmalarını ve başka devrelerden gelebilecek parazit gerilimlerini önleyici görev yapar. Değeri, devre geriliminin büyüklüğüne göre, hesaplanır. Şekildeki bir devre için 30V – 1000µF ‘lık bir kondansatör uygundur.

Burada birinci derecede önemli olan, RS direnci ile zener diyodun seçimidir.

Şekil 3.16
Şekil 3.16 – Zener diyodun gerilim regülatörü olarak kullanılması

Seri RS direncinin seçimi:

Önce RS direncine karar vermek gerekir;

Kaynak gerilimi: E=V=9V
Yük direnci ve uçları arasındaki gerilim: RL=33 Ohm, VL=6.2V

Bu durumda, zener diyot dikkate alınmadan, VL=6.2V ‘u oluşturabilmek için kaç ohm ‘luk bir RS direncinin gerektiği hesaplanmalıdır.

E=IL*RS+VL    ve   IL=VL/RL ‘dir.

Birinci formüldeki IL yerine, ikinci formüldeki eşitini yazıp, değerler yerine konulursa :

9=6,2/33*RS+6,2   olur.

Buradan RS çözülürse:

RS=(9-6,2)33/6,2 ‘den,    RS=14.9 = 15 (ohm) olarak bulunur.

RS=15 Ohm ‘luk direnç bağlandığında, "E" gerilimi 9V ‘ta sabit kaldığı sürece RL yük direnci uçları arasında sürekli olarak 6.2V oluşacaktır.

"E" geriliminin büyümesi halinde, A-B noktaları
arasındaki VA-B gerilimi de 6.2V ‘u aşacağından, 6.2V ‘luk bir ZENER diyot kullanıldığında, RL uçları arasındaki gerilim sabit kalacaktır. Ancak, yalnızca gerilime göre karar vermek yeterli değildir.

Bu durumda nasıl bir zener diyot kullanılmalıdır?

Zener diyodun seçimi:

Zener gerilimi 6.2V olan bir zener diyot RL direncine paralel bağlandığında VL=6.2V ‘ta sabit kalır.

Ancak, E giriş geriliminin büyümesi sırasında zener diyottan akacak olan akımın, diyodun dayanabileceği "maksimum ters yön zener akımından" (IZM) büyük olması gerekir. Zener diyot buna göre seçilmelidir.

6.2V ‘luk olup ta değişik IZM akımlı olan zener diyotlar vardır.

Örneğin:

Aşağıdaki tabloda, bir firma tarafından üretilen, 6.2V ‘luk zenerlere ait IZM akımı ve güç değerleri verilmiştir.

Zener Maksimum akımı  (IZM) (mA)

33

60

146

1460

7300

Zener Gücü (W)

0.25

0.4

1

10

50

Bu zenerler den hangisinin seçileceğine karar vermeden önce yük direncinden geçecek akımı bilmek gerekir:

Şekil 3.16 ‘daki devrenin yük direncinden geçen akım aşağıdaki gibi olur.

IL=VL/RL = 6.2/33 = 0.188A = 188mA

E geriliminin büyümesi halinde oluşacak devre akımının 188mA ‘in üstündeki miktarı zener diyottan akacaktır.

Örneğin:
E geriliminin ulaştığı maksimum gerilim; E = 12.2V olsun.

Zener diyottan geçecek olan akımın değeri şu olacaktır:

Kirchoff kanununa göre:

12.2 = It*RS+6.2 (It devreden akan toplam akımdır.)

RS = 15 yerine konarak It çözülürse;

It = 1.22-6.2/15 = 6/15 ‘den   It = 0,4A = 400mA olur.

Bu 400mA ‘den 188mA ‘i RL yük direncinden geçeceğine göre;

Zener diyottan geçecek olan IZ akımı: IZ = 400-188 = 212mA ‘dir.

Bu değer, yukarıdaki tabloya göre:

10W ‘lık zenerin maksimum akımı olan 1460mA ‘den küçük, 1W ‘lık zenerin maksimum akımı olan 146mA ‘den büyüktür.

Böyle bir durumda 10W ‘lık zener kullanılacaktır.

Aslında, 212mA ‘lik zener için 1460mA ‘lik zener kullanmakta doğru değildir. Daha uygun bir zener seçimi için başka üretici listelerine de bakmak gerekir.

3 – Ölçü Aletlerinin Korunmasında Zener Diyot

Döner çerçeveli ölçü aletlerinin korunmasında, zener diyot şekil 3.17 ‘deki gibi paralel bağlanır. Bu halde zener gerilimi, voltmetre skalasının son değerine eşittir. Ölçülen gerilim zener gerilimini aşınca diyot ters yönde iletken hale geçerek ölçü aletinin zarar görmesini engeller. Ayar olanağı sağlamak için birde potansiyometre kullanılabilir.

Şekil 3.17
Şekil 3.17 – Döner çerçeveli ölçü aletinin zener diyot ile korunması
4 – Rölenin Belirli Bir Gerilimde Çalıştırılmasında Zener Diyot

Şekil 3.18 ‘deki gibi zener diyot, röleye seri ve ters yönde bağlanmıştır. Röle, ancak uygulanan gerilimin, Zener gerilimi ile röle üzerinde oluşacak gerilim düşümü toplamını aşmasından sonra çalışmaktadır.

Şekil 3.18
Şekil 3.18 – Ancak zener gerilimi üstünde çalışabilen röle devresi

 

Tünel Diyot ve Karakteristiği

Tünel diyotlar, özellikle mikro dalga alanında yükselteç ve osilatör olarak yararlanılmak üzere üretilmektedir. Tünel diyoda, esaslarını 1958 ‘de ilk ortaya koyan Japon Dr. Lee Esaki ‘nin adından esinlenerek "Esaki Diyodu" dan denmektedir.

Yapısı:

P-N birleşme yüzeyi çok ince olup, küçük gerilim uygulamalarında bile çok hızlı ve yoğun bir elektron geçişi sağlanmaktadır. Bu nedenledir ki Tünel Diyot, 10.000 MHz ‘e kadar ki çok yüksek frekans devrelerinde en çok yükselteç ve osilatör elemanı olarak kullanılır.

Şekil 3.19
Şekil 3.19 – Tünel diyodun karakteristik eğrisi.

Çalışması:

Şekil 3.19 ‘da da görüldüğü gibi, tünel diyoda uygulanan gerilim Vt1 değerine gelinceye kadar gerilim büyüdükçe
akım da artıyor. Gerilim büyümeye devam edince, akım A noktasındaki It değerinden düşmeye başlıyor. Gerilim büyümeye devam ettikçe, akım B noktasında bir müddet IV değerinde sabit kalıp sonra C noktasına doğru artıyor. C noktası gerilimi Vt2, akımı yine It ‘dir. Bu akıma "Tepe değeri akımı" denilmektedir.

Gerilimi, Vt2 değerinden daha fazla arttırmamak gerekir. Aksi halde geçen akım, It tepe değeri akımını aşacağından diyot bozulacaktır.

I = f(V) eğrisinin A-B noktaları arasındaki eğimi negatif olup, -1/R ile ifade edilmekte ve diyodun bu bölgedeki direnci de negatif direnç olmaktadır.
Tünel diyot A-B bölgesinde çalıştırılarak negatif direnç özelliğinden yararlanılır.

Tünel Diyodun Üstünlükleri:
  1. Çok yüksek frekansta çalışabilir.
  2. Güç sarfiyatı çok düşüktür. 1mW ‘ı geçmemektedir.
Tünel Diyodun Dezavantajları:
  1. Stabil değildir. Negatif dirençli olması nedeniyle kontrolü zordur.
  2. Arzu edilmeyen işaretlere de kaynaklık yapmaktadır.
Tünel Diyodun Kullanım Alanları:
  1. Yükselteç Olarak Kullanılması:
    Tünel diyot, negatif direnci nedeniyle, uygun bir bağlantı devresinde kaynaktan çekilen akımı arttırmakta, dolayısıyla bu akımın harcandığı devredeki gücün yükselmesini sağlamaktadır.
  2. Osilatör Olarak Kullanılması:
    Tünel diyotlardan MHz mertebesinde osilatör olarak yararlanılabilmektedir.
    Bir tünel diyot ile osilasyon sağlayabilmek için negatif direncinin diğer rezonans elemanlarının pozitif direncinden daha büyük olması gerekir. Tünel diyoda Şekil 3.20 ‘de görüldüğü gibi seri bir rezonans devresi bağlanabilecektir. Tünel diyodun negatif direnci – R=80 Ohm olsun.
    Rezonans devresinin direnci 80 Ohm ‘dan küçük ise tünel diyot bu devrenin dengesini bozacağından osilasyon doğacaktır.
  3. Tünel Diyodun Anahtar Olarak Kullanılması:
    Tünel diyodun önemli fonksiyonlarından biri de elektronik beyinlerde multivibratörlerde, gecikmeli osilatörlerde, flip-flop devrelerinde ve benzeri elektronik sistemlerde anahtar görevi görmesidir. Ancak bu gibi yerlerdeki kullanılma durumları daha değişik özellik gösterdiğinden ayrı bir inceleme konusudur.
Şekil 3.20
Şekil 3.20 – Tünel diyot osilatörü

Işık Yayan Diyot (Led)

Işık yayan diyotlar, doğru yönde gerilim uygulandığı zaman ışıyan, diğer bir deyimle elektriksel enerjiyi ışık enerjisi haline dönüştüren özel katkı maddeli PN diyotlardır.

Bu diyotlara, aşağıda yazılmış olduğu gibi, İngilizce adındaki kelimelerin ilk harfleri bir araya getirilerek LED veya SSL denir.

LED: Light Emitting Diode (Işık yayan diyot)
SSL: Sloid State Lamps (Katkı hal lambası)

Sembolü:
Işık yayan diyotlar şu özelliklere sahiptir:
  •  Çalışma gerilimi 1.5-2.5V arasındadır. (Kataloğunda belirtilmiştir.)
  •  Çalışma akımı 10-50mA arasındadır. (Kataloğunda belirtilmiştir.)
  •  Uzun ömürlüdür. (ortalama 105 saat)
  •  Darbeye ve titreşime karşı dayanıklıdır.
  •  Kullanılacağı yere göre çubuk şeklinde veya dairesel yapılabilir.
  •  Çalışma zamanı çok kısadır.  (nanosaniye)
  •  Diğer diyotlara göre doğru yöndeki direnci çok daha küçüktür.
  •  Işık yayan diyotların gövdeleri tamamen plastikten yapıldığı gibi, ışık çıkan kısmı optik mercek, diğer kısımları metal olarak ta yapılır.

1. Işık Yayma Olayı Nasıl Gerçekleşmektedir

Bilindiği gibi, bir PN diyoda, doğru polarmalı bir besleme kaynağı bağlandığı zaman, N bölgesindeki, gerek serbest haldeki elektronlar, gerekse de kovalan bağlarını koparan elektronlar P bölgesine doğru akın eder.

Yine bilinmektedir ki, elektronları atomdan ayırabilmek için, belirli bir enerji verilmesi gerekmektedir. Bu enerjinin miktarı iletkenlerde daha az, yarı iletkenlerde daha büyük olmaktadır. Ve bir elektron bir atomla birleşirken de aldığı enerjiyi geri vermektedir.

Bu enerji de maddenin yapısına göre ısı ve ışık enerjisi şeklinde etrafa yayılmaktadır.

Bir LED ‘in üretimi sırasında kullanılan değişik katkı maddesine göre verdiği ışığın rengi değişmektedir.

Katkı maddesinin cinsine göre şu ışıklar oluşur:
  •  GaAs (Galliyum Arsenid): Kırmızı ötesi (görülmeyen ışık)
  •  GaAsP (Galliyum Arsenid Fosfat): Kırmızıdan – yeşile kadar (görülür)
  •  GaP (Galliyum Fosfat): Kırmızı (görülür)
  •  GaP (Nitrojenli): Yeşil ve sarı (görülür)

Şekil 3.21(a) ve (b)’ de gerilim uygulanan bir LED devresi ve ışık yayan diyodun tabii büyüklükteki resmi verilmiştir.

Diyot kristali, Şekil 3.21(c) ‘de görüldüğü gibi iki parçalı yapıldığında uygulanacak gerilimin büyüklüğüne göre kırmızı, yeşil veya sarı renklerden birini vermektedir.

Işık yayan diyot ısındıkça, ışık yayma özelliği azalmaktadır.
Bu hal Şekil 3.21(d) ‘de etkinlik eğrisi olarak gösterilmiştir. Bazı hall
erde fazla ısınmayı önlemek için bir soğutucu üzerine monte edilir.

Ayrıca LED ‘in aşırı ısınmasına yol açmamak için kataloğunda belirtilen akımı aşmamak gerekir. Bunun için Şekil 3.21(b) ‘de gösterilmiş olduğu gibi devresine seri olarak bir R direnci konur. Bu direncin büyüklüğü LED ‘in dayanma gerilimi ile besleme kaynağı gerilimine göre hesaplanır.

Örneğin:

Şekil 3.21(b) ‘deki devrede verilmiş olduğu gibi, besleme kaynağı 9V ‘luk bir pil ve LED ‘de 2V ve 50mA ‘lik olsun.

R direnci:

Kirşof kanununa göre:  9=I*R+2 ‘dir.     I=0.05A olup

R=9-2/0.05 = 7/0.05 = 140 Ohm olarak bulunur.

140 Ohm ‘luk standart direnç olmadığından en yakın standart üst direnci olan 150 Ohm ‘luk direnç kullanılır.

Şekil 3.21

2. Led İçindeki Elektrik – Optik Bağıntılar

Akım-Işık şiddeti bağlantısı:

LED diyodunun ışık şiddeti, içinden geçen akım ile doğru orantılı olarak artar.Ancak bu artış; Şekil 3.22 ‘de görüldüğü gibi akımın belirli bir değerine kadar doğrusaldır. Daha sonra bükülür.

Eğer diyoda verilen akım, eşik değeri adı verilen doğrusallığın bozulduğu noktayı aşarsa diyot aşırı ısınarak bozulur. Bu nedenle diyotlar kullanılırken, firmalarınca verilen karakteristik eğrilerine uygun olarak çalıştırılmalıdır.

Şekil 3.22
Şekil 3.22 – Led ışık şiddetinin akıma göre değişimi

Sıcaklık-ışık şiddeti bağıntısı:

Diyot ısındıkça, akım sabit kaldığı halde, verdiği ışık şiddeti Şekil 3.21(d) ‘de görüldüğü gibi küçülür.

Bu düşme diyodun cinsine göre şöyle değişir.

GaAs diyotta düşme: Her derece için %0,7
AaAsP diyotta düşme: Her derece için %0,8
GaP diyotta düşme: Her derece için %0,3

Normal çalışma şartlarında bu düşmeler o kadar önemli değildir. Ağır çalışma şartlarında ise soğutucu kullanılır veya bazı yan önlemler alınır.

Güç-zaman bağıntısı:

Işık yayan diyotların gücü zamanla orantılı olarak düşer. Bu güç normal gücünün yarısına düştüğünde diyot artık ömrünü tamamlamıştır.

Bir LED diyodun ortalama ömrü 105 saattir. Şekil 3.23 ‘te, LED diyodun yayım gücünün, normal şartlarda (IF=100mA, T ortam=25°C iken,) zamana göre değişim eğrisi verilmiştir. Bu tip değerlendirmede, gücün düşme miktarı direk güç değeri olarak değil de, normal güce oranı olarak alınmaktadır.

Şekil 3.23
Şekil 3.23 – Led diyodun yayım gücünün zamana karşı değişimi

3. Işık Yayan Diyodun Verimi

Işık yayan diyodun verimi; yayılan ışık enerjisinin, diyoda verilen elektrik enerjisine oranıyla bulunur. Diyoda verilen elektrik enerjisinin hepsi ışık enerjisine dönüşmemektedir. Yani harekete geçirilen elektronların hepsi bir pozitif atom ile birleşmemekte, sağa sola çarparak enerjisini ısı enerjisi halinde kaybetmektedir.

4. Işık Yayan Diyotların Kullanım Alanları

Işık yayan diyotların en yaygın kullanılma alanı, dijital ölçü aletleri, dijital ekranlı bilgisayarlar, hesap makinaları ve yazıcı elektronik sistemlerdir. Bu kullanma şeklinde, çoklu ışık yayan diyotlardan yararlanılmaktadır. Bazı hallerde ışık yayan diyotlardan işaret lambası ve ışık kaynağı olarak da yararlanılır. Optoelektronik kuplör de bir LED uygulamasıdır.

5. Optoelektronik Kuplör

Optoelektronik kuplör veya daha kısa deyimle Opto Kuplör ya da Optik Kuplaj Şekil 3.24 ‘te görüldüğü gibi bir ışık yayan diyot (LED) ile bir fotodiyot veya fototransistörden oluşmaktadır. Bunlar aynı gövdeye monte edilmişlerdir. Gövde plastik olup ışık iletimine uygundur.

Işık yayan diyot genellikle Ga As katkı maddeli olup kızıl ötesi ışık vermektedir. Işık yayan diyodun uçları arasına bir gerilim uygulandığında çıkan ışık ışınları fotodiyot veya fototransistörü etkileyerek çalıştırmaktadır. Böylece bir devreye uygulana bir gerilim ile 2. bir devreye kuma
nda edilmektedir. Aradaki bağlantı, bir takım tellere gerek kalmaksızın ışık yoluyla kurulmaktadır. Bu nedenle, optoelektronik kuplör edı verilmiştir.

Optokuplör bir elektronik röledir.

Optokuplörün mekanik röleye göre şu üstünlükleri vardır:

  •  Mekanik parçaları yoktur.

  •  İki devre arasında büyük izolasyon vardır.

  •  Çalışma hızı çok büyüktür.

Dezavantajları:

  •  Gücü düşüktür.

Şekil 3.24
Şekil 3.24 – Opto elektronik kuplör.
Opto kuplör dere şeması Şekil 3.25 ‘te görüldüğü gibi çizilir. Burada LED ‘in doğru polarmalı, fotodiyodun ise ters polarmalı olduğuna dikkat edilmelidir. R1 ve R2 dirençleri koruyucu dirençlerdir.

"K" anahtarı kapatılarak giriş devresi çalıştırıldığında, çıkış devresi de enerjilenerek bir işlem yapar. Örneğin, devreye bir motorun kontaktarü bağlanırsa motor çalışır.

Şekil 3.25
Şekil 3.25 – Opto kuplör ile bir kontaktörün çalıştırılması.

Foto Diyot

Foto diyot ışık enerjisiyle iletime geçen diyottur.

Foto diyotlara polarma geriliminin uygulanışı normal diyotlara göre ters yöndedir. Yani anoduna negatif (-), katoduna pozitif (+) gerilim uygulanır.

Sembolü:

Foto Diyot

Başlıca foto diyotlar şöyle sıralanır:
  •  Germanyum foto diyot
  •  Simetrik foto diyot
  •  Schockley (4D) foto diyodu

1. Germanyum FotoDiyot

Aslı alaşım yoluyla yapılan bir NP jonksiyon diyotudur. Cam veya metal bir koruyucu içerisine konularak iki ucu dışarıya çıkartılır. (Şekil 3.26).

Koruyucunun bir tarafı, ışığın jonksiyon üzerinde toplanmasını sağlayacak şekilde bir mercek ile kapatılmıştır.

Diyodun devreye bağlanması sırasında firmasınca uçlarına konulan işarete dikkat etmek gerekir. Hassas yüzeyi çok küçük olduğundan, 1.-3mA ‘den daha fazla ters akıma dayanamaz.

Aşırı yüklemeyi önlemek için, bir direnç ile koruyucu önlem alınır. Işık şiddeti arttırıldıkça ters yön akımı da artar.

Şekil 3.26
Şekil 3.26 – Germayum Foto diyot

Foto Diyodun Çalışma Prensibi

Foto diyot ters polarmalı bağlandığından üzerine ışık gelmediği müddetçe çalışmaz. Bilindiği gibi ters polarma nedeniyle P-N birleşme yüzeyinin iki tarafında "+" ve "-" yükü bulunmayan bir nötr bölge oluşmaktadır.

Şekil 3.27 ‘de görüldüğü gibi birleşme yüzeyine ışık gelince, bu ışığın verdiği enerji ile kovalan bağlarını kıran P bölgesi elektronları, gerilim kaynağının pozitif kutbunun çekme etkisi nedeniyle N bölgesine ve oradan da N bölgesi serbest elektronları ile birlikte kaynağa doğru akmaya başlar.

Diğer taraftan, kaynağın negatif kutbundan kopan elektronlar, diyodun P bölgesine doğru akar.

Şekil 3.27
Şekil 3.27 – Foto diyodun çalışması
  1. Yapısal gösterimi
  2. Sembolik gösterimi

2. Simetrik FotoDiyotlar

Alternatif akım devrelerinde kullanılmak üzere, Şekil 3.28 ‘de görüldüğü gibi NPN veya PNP yapılı simetrik fotodiyotlar da üretilmektedir.

Şekil 3.28
Şekil 3.28 – Simetrik foto diyot
Işığa Duyarlı Diyotların Kullanım Alanları:

Uzaktan kumanda, alarm sistemi, sayma devreleri, yangın ihbar sistemleri, elektronik hesap makineleri,  gibi çeşitli konuları kapsamaktadır.

Şekil 3.29 ‘da ışığa duyarlı elemanların, foto elektrik akımının (Iph) ışık şiddetine göre değişimleri verilmiştir.

Şekil 3.29
Şekil 3.29 – Çeşitli ışığa hassas elemanların akımlarının ışık şiddeti ile değişimleri

Ayarlanabilir Kapasiteli Diyot (Varaktör – Varikap)

Bir P-N jonksiyon diyoda ters yönde gerilim uygulandığında, temas yüzeyinin iki tarafında bir boşluk (nötr bölge) oluştuğu ve aynen bir kondansatör gibi etki gösterdiği, kondansatörler bölümünde de açıklanmıştı.

Varaktör diyotta da P ve N bölgeleri Şekil 3.30 ‘da görüldüğü gibi kondansatörün plakası görevi yapmaktadır.

C = epsilon.jpg (467 bytes)A/d = epsilon.jpg (467 bytes)*Plaka Yüzeyi / Plakalar Arası Açıklık kuralına göre:

Küçük ters gerilimlerde "d" boşluk bölgesi dar olduğundan varaktör kapasitesi ("C") büyük olur.

Gerilim arttırıldıkça  d  boşluk bölgesi genişleyeceğinden, "C" de küçülmektedir.

Ters Polarmalı Bağlantı
Şekil 3.30 – Ters polarmalı bağlantı

Varaktör değişken kondansatör yerine kullanılabilmekte ve onlara göre hem ucuz olmakta, hem de çok daha az yer kaplamaktadır.

Kaçak akımının çok küçük olması nedeniyle varaktör olarak kullanılmaya en uygun diyotlar silikon diyotlardır.

Varaktörün Tipik Özellikleri:
  •  Koaksiyel cam koruyuculu, mikrojonksiyon varaktör 200GHz ‘e kadar görev 
    yapabilmektedir.
  •  Kapasitesi 3-100pF arasında değiştirilebilmektedir.
  •  0-100V gerilim altında çalışabilmektedir.
  •  Varaktöre uygulana gerilim 0 ile 100V arasında büyütüldüğünde, kapasitesi 10 misli küçülmektedir.
  •  Varaktörün eşdeğer devresi Şekil 3.31 ‘de verilmiştir. Yüksek frekanslarda L selfi birkaç nanohenri (nH), Rs birkaç Ohm olmaktadır.
Şekil 3.31

Şekil 3.31 – Bir varaktörün eşdeğer devresi

Şekil 3.32 ‘de, VT ters yön gerilimine göre "C" kapasitesinin değişim eğrisi verilmiştir.

Şekil 3.32

Şekil 3.32 – Varaktör kapasitesinin ters yön gerilimine göre değişimi.

Varaktörün başlıca kullanım alanları:

Ayarlı devrelerin uzaktan kontrolü, TV ve FM alıcı lokal osilatörlerinde otomatik frekans kontrolü ve benzeri devrelerde kullanılır.

Telekominikasyonda basit frekans modülatörleri, arama ayar devreleri, frekans çoğaltıcılarda, frekansın 2-3 kat büyütülmesi gibi kullanım alanları vardır.

Bu yazı Uncategorised kategorisine gönderilmiş. Kalıcı bağlantıyı yer imlerinize ekleyin.

Bir Cevap Yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir